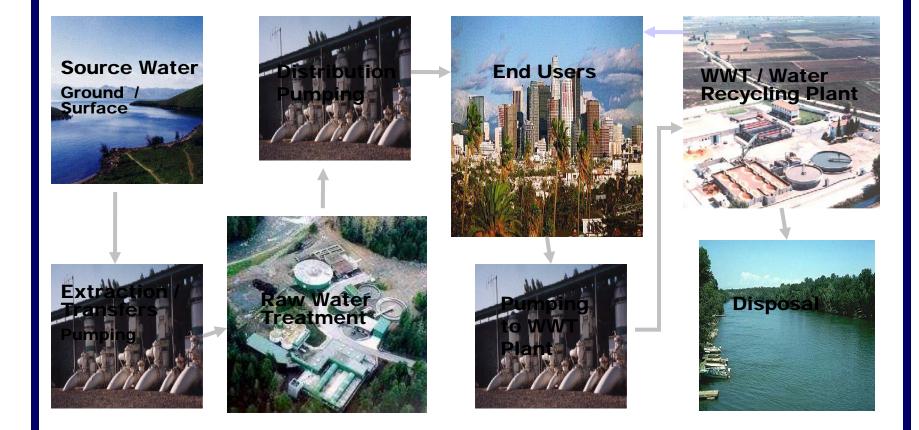


California Energy Commission

Energy & Water Nexus: Availability & Impacts SEIA 2010 Energy Conference Short-Term Stresses, Long-Term Change" April 6 - 7, 2010; Washington, DC Shahid Chaudhry schaudhr@energy.state.ca.us California Energy Commission



Water-Energy Link

Typical Urban Water Cycle

Energy & the Water Sector

Worldwide Water Pumping

~ 7% of World's Total Energy Use

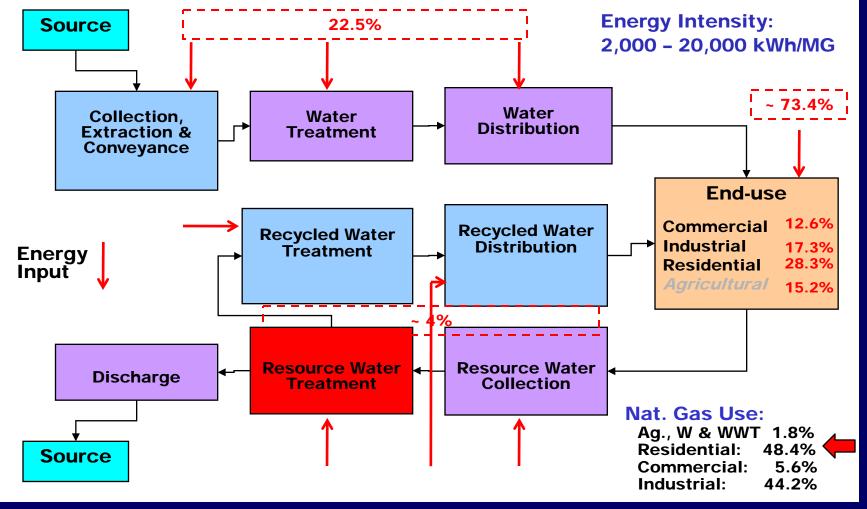
 \rightarrow ~ Energy Use in Japan & Taiwan Combined

U.S.* 3% of Total Electricity Use for Pumping +1% for Treatment of W&WW

Water Facilities161,000 (Public & Private)~ 60,000 POWT Systems, Serves 92% of Population

WW Facilities 16,225 (~ All Publically Owned)

For U.S. Water Cycle^{**}: 521 x 10⁶ MWhr 13% of All Electricity Produced in the U.S. \rightarrow 290 M Metric Tons CO_{2e} GHG Emissions


* EPRI, 2002

** River Network, 2009

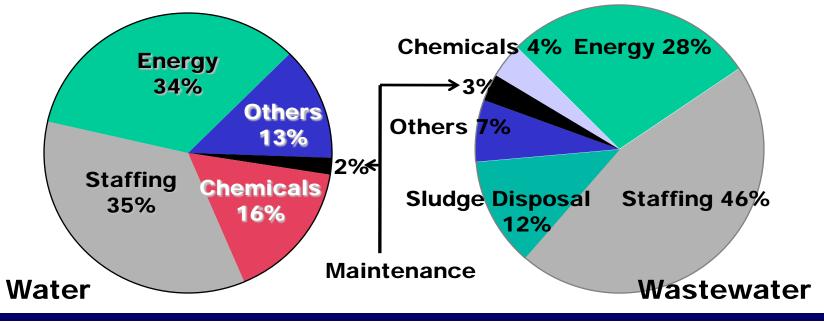
California Energy Commission

• Energy Input in Typical Water Cycle

Major Energy User in the Water Systems Electric Pump/Motors -Single Largest Category Electric End-Use, Consumes 23% of all Electricity Sold in the U.S., & Generally Most Inefficient (Survey Finds Eff. Range 5 - 80%) Initial Costs, Other Costs, 8% Water Treatment 10% 90% WW Treatment Aeration 55% Pumping 14% Energy Maintenance

Solids Handling 14% Others (lighting, belt press, clarifiers, return sludge handling etc)

Life Cycle Cost of Pump (Source: World Pumps - Jan 2008)


Cost 45%

Cost: 37%

 Electricity Use @ W&WWTP Level Energy Costs:

> Could be as High As 80% of Plant's Energy Costs, 40 – 55% of W&WW Utilities' Operating Budget, 2nd after Staffing, & One of Five Top Rated Concerns.

Reducing Energy Use @ W&WW Facilities

Water Conservation & Water Use Efficiency, Repairing / Replacing Leaking & Damaged Pipes & Equipment,

Energy Efficient Buildings, Lighting, & HVAC Systems,

Reducing Process Energy Usage,

Replacing / Retrofitting Aging Equipment with More Efficient Technologies

(VFDs, More Efficient Pumps & Motor Systems, etc.)

Improving Electrical Load Management through Scheduling or Control modifications, & Adding System Flexibility with Storage.

• Emerging Challenges in W-E Nexus Increasing Population

→ More Water & Energy Needs

Traditional Water Sources → Dwindling Supplies + Deteriorating Quality + New Contaminants + Environmental & Regulatory Constraints (i.e. Stringent Regulations)

→ Energy Intensive Technologies (UF, MF, UV, Ozone, MBRs, Desalination)

Water Related Energy Demand is Increasing @ Much Faster Rate - May be 50% More by 2030

New Kids on the Block GHG Emissions / Climate Change Impacts, → <u>Carbon Neutrality; &</u> Sustainability Considerations

• Measures Needed - Water Side

Short-Term Actions

Aggressively Increasing Water Conservation, Water Use Efficiency, & Water Leak Detections;

Expanding Water Storage <u>& Improved Coordination</u> between Stored and Other Water Supplies;

Developing Conjunctive Use Management Plans;

Water Efficiency in Ag. Sector by Applying All Feasible Efficient Water Management Practices;

Increasing Use of Recycled Water

Developing Other Local Resources - Desalination

Long Term Strategies include

→ R&D and Monitoring & Evaluation Activities

Evaluating Long Terms Impacts of CC on Future Water Supply through Expanded Monitoring and Atmospheric Observations,

Identifying Research Needs to Help Reducing Vulnerability to Climate Change, etc.

Future Water & WW Treatment Systems

Sustainability through <u>Holistic</u> Water-Energy Management Approach,

Incorporate <u>Broader Vision</u> & <u>Flexible</u> <u>Engineering Design</u> Over the System's Life Span in Terms of:

Treatment Capacity Capital Investment & Operating Costs Source Water Quality Effluent Standards, & Biosolids Management

Wastewater Treatment Systems will Serve as Resource Centers to Recover & Reuse:

Water, Energy, Nutrients, & Heavy Metals

• Emerging Considerations in Sustainable Water Systems

Water Transfers vs. Developing Local Water Sources,

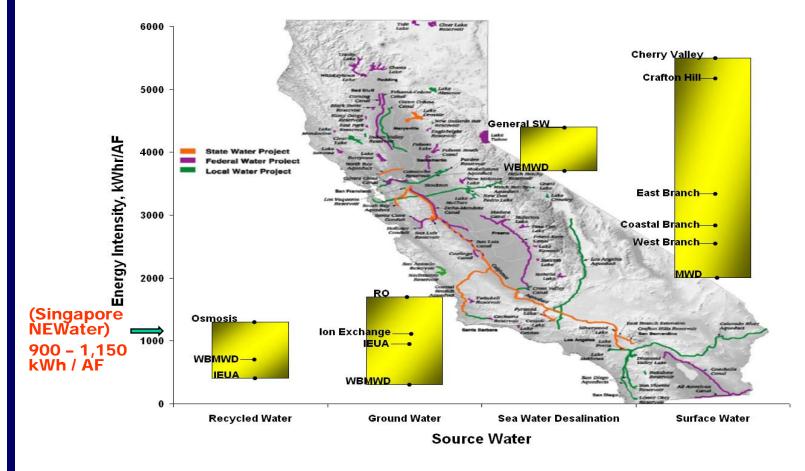
Demand & Constraint Based Advanced Transport & Treatment Management Systems,

Innovative & EE Treatment Processes & Technologies,

Advanced Sensors and Real Time Monitoring of Raw Water Quality for Instantaneous Treatment Process Control & O&M Optimization;

New Design, Management, & Operational Philosophies (e.g. Decentralized Treatment Systems);

Better Coordination


Among Resource Management Agencies to Identify and Address Energy Implications of Water Policy Decisions.

Learn from Others

Oil Industry - Avoid Racing to the Pump Explore Alternatives

• Future Water Resources Development - On Case by Case Basis

Renewable Energy Helps Saving Water (gal / kWh)

Wind	0.001
PV Solar	0.030
Oil	0.43
Coal	0.49
Nuclear	0.62
Hydro	18.27

Avg. Water Use / Loss: Hydro vs. Thermal: 18.27 vs. 0.47 (Gal/kWh)

Government can Help Accelerating the Water-Energy Systems' Sustainability by Supporting:

RD&D Programs Technology Transfer Activities, and Education, Information Dissemination & Out Reaching