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Executive Summary 
 
This report has been prepared in response to section 603(b) of the Energy Independence 
and Security Act of 2007, (Pub. L. No. 110-140), which states that “…the Secretary of 
Energy shall transmit to Congress a report on the results of a study on methods to reduce 
the amount of water consumed by concentrating solar power systems.”  
 
Because of the huge solar resource available in the Southwest United States, utilities are 
showing increasing interest in the deployment of concentrating solar power (CSP) plants 
to meet the requirements of state renewable portfolio standards. The Federal government 
is also encouraging the development of CSP plants through a 30% investment tax credit.  
 
This report discusses potential methods to reduce water consumption associated with 
CSP.  Four main concentrating solar power technologies are described in this report: 
parabolic troughs, linear Fresnel, power towers, and dish/engine. Parabolic troughs are 
the most commercially available technology. Linear Fresnel and power tower 
technologies are presently being planned as commercial plants, but none have yet been 
built in the U.S.  The first three of these technologies use the heat collected from the sun 
to power conventional Rankine steam cycles, similar to those used for coal and nuclear 
plants.  Steam cycle power plants require cooling to function (cooling is needed to 
condense the steam and complete the cycle). This cooling can be provided via water 
cooling, air cooling or a combination. Dish/engine systems use sunlight to power a small 
engine at the focal point. Stirling cycle engines using hydrogen as the working fluid are 
typically employed in dish/engine systems. These are air-cooled and only require water 
for mirror washing.   
 
Water cooling for thermoelectric power plants is accomplished using two methods: once-
through cooling and recirculating evaporative cooling.  Once-through cooling withdraws 
large volumes (23,000 to 27,000 gal/MWh) from a body of water and returns it to that 
source at an elevated temperature, which causes additional evaporative loss from that 
body of water.  Recirculating evaporative cooling withdraws a lesser amount (500 to 650 
gal/MWh for an equivalent plant) but consumes most of the water directly through 
evaporation.1  It should be noted that once-through cooling may be restricted in use for 
new thermoelectric power plants based on concerns with the potential aquatic 
environmental impact of such systems.2  
 
Air cooling rejects the heat of the steam cycle directly to the air.  A fossil power plant 
using this technology withdraws water only for the steam cycle blowdown and domestic 
water uses, which amount to less than 10% of the consumption of an evaporative cooled 
plant.3   
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As with fossil and nuclear power plants, wate
air cooling for CSP plants because w
thermal efficiency, and it ma
air cooling has reduced effec
commercial CSP plants, water is req
the steam cycle, and for mi
those that have many hours of 
water.  Supplying water from
systems that use conventional water cooling ca
various options by which CSP system
water consumption than they consume today.   
 
The majority of new fossil power plants use evaporative water cooling to reject the steam
cycle heat.  A typical coal plant or nuclear plant consumes 500 gallons of water per M
(gal/MWh) of electricity generated.1, 3  This is similar to the water consumption by a 
power tower. A combined-cycle natural gas plant consumes about 200 gal/MWh.4   A 
water-cooled parabolic trough plant consumes about 800 gal/MWh. Of this, 2% is use
for mirror washing.5 Dish/engine systems only require water for mirror washing 
(approximately 20 gal/MWh).  

Figure 1: Above, power tower pilot project, pioneered 
in the U.S. (Barstow, CA) and (left) commercial unit 
under development by Abengoa called PS10, an 11 MW 
plant in Sevilla Spain (photo credit:  Abengoa Solar). 
Bottom left, Stirling Dish/Engine, Center SEGS trough 
plants, Right, Compact Linear Fresnel Reflector. 
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typical dry-cooled plant routes turbine exhaust steam directly to finned tubes on air-
cooled condensers. A study of a dry-cooled parabolic trough plant located in the Mojave 
Desert concluded that dry cooling would provide 5% less electric energy on an annual
basis and increase the cost of the produced electricity by 7 to 9%.7 However, the results
are location-specific. For example, air cooling at a site in New Mexico would increase th
cost of electricity by only 2% because maximum daytime temperatures are consid
lower there than in the Mojave D 8

 
The performance penalty of using air cooling also varies by technology. One study 
projected the annual electric output of a trough plant to drop by 4.6%, whereas that of a
power tower to drop by only 1.3%.  A simple model analysis estimates the difference
between trough and tower technology using dry cooling will only differ by 0.5%.9 The 
economic consequences will vary with climate which impacts the cooling system 
performance, water conditions which affects the cost of water treatment for an 
evaporative cooling tower, and depend on the premium value of delivered electricity 
during peak demand consequent with high ambient temperatures. One study showed that 
the net present value of an air-cooled CSP
c
output during peak summer hours.10     
 
Hybrid wet/dry cooling systems use some combination of wet and dry cooling to reduce
water consumption. Several recent plants built to conserve water have used a parallel 
cooling system (PCS), which uses both an air cooler (typically smaller than that us
air-cooled-only plant) and a small wet cooling tower operating in parallel for us
the summer.11 In hot weather, the steam exiting the turbine is split with one portion 
routed to the air-cooled condenser and the other stream routed to the water cooled 
condenser with heat rejection to an evaporative cooling tower. A model study for a 
parabolic trough CSP power plant, showed this reduces water consumption 50% with 
only a 1% drop in annual electrical ener
F
water-cooled plant, or somewhat less than the cost penalty estimated for a direct dry 
cooling plant.12  
 
Air cooling and wet/dry hybrid cooling systems offer highly viable alternatives that could
reduce the total water usage of steam-generating CSP plants by 80 to 90% at a penal
electricity cost in the neighborhood of 2 to 10%, depending on plant location and o
assumptions.13 The penalty for linear Fresnel designs has not yet been analyzed, but
expected to be somewhat higher than for troughs because of its lower operating 
temperature. Conversely, power towers would have a lower cost penalty because of their 
higher operating temperature. Additional research and development (R&D) and field 
experience should further decrease the need for water and help achieve cost penalties
closer to the lowe
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Introduction 
 
This report has been prepared in response to the Energy Independence and Security Act 
of 2007 (Pub. L. No. 110-140), section 603(b), which states:   
 

“(b) Water Consumption- Not later than 6 months after the date of the 
enactment of this Act, the Secretary of Energy shall transmit to Congress a 
report on the results of a study on methods to reduce the amount of water 
consumed by concentrating solar power systems.” 

 issue with concentrating solar power plants because they are 
ost cost effective in locations where the sun is most intense, which in turn often 

sources and is coincident 
ith high demand centers.  Solar energy is the largest available renewable energy 

resourc ower 
(CSP) p ch 
power a urces 
in the s y of water in this rapidly 

rowing area, however, has caused California to place restrictions on power plant water 

for 

text 

nt of technologies like CSP. RPS requirements now exist in 26 states and 
e District of Colombia, as shown in Figure 3.  

 
Water consumption is an
m
corresponds to places like the Mojave Desert where there is little water. As shown in 
Figure 2, the Southwestern United States has excellent solar re
w

e in the Southwest region; it is so widespread that Concentrating Solar P
rojects covering 1.4% of southwestern land could potentially generate as mu
s used in the entire U.S.14 California, for example, has excellent solar reso

outhern part of the state. The issue of the availabilit
g
use. 15 Other Southwestern 
states may also eventually 
impose restrictions on the 
amount of water available 
use by power plants. 
 
This report attempts to identify 
concerns regarding water 
consumption for CSP, presents 
information on the water 
requirements of electrical 
power generation, and 
discusses technologies that 
address water use in the con
of CSP power generation. 
 
Peak power demand, 
particularly in California, 
Nevada and Arizona, is 
approaching system capacity and 
growing rapidly. It is expected 
that renewable energy sources 
will increasingly be tapped to meet market and regulatory demands. Many of the 
Southwestern states have established renewable portfolio standards (RPS) that encourage 
the developme

Figure 2, Solar Intensity in the Southwest Figure 2: Solar Intensity in the Southwest 
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Figure 3: State Renewable Portfolio Standard requirements (Union of Concerned Scientists) 

 
CSP power plants employing parabolic trough technology have been performing reliably 
on a comm  the Southwestern United States for more than 15 years.16  
Currently there are over 400 MW of generating capacity installed that are producing 
electricity on  utility scale, and there are power purchase agreements signed to construct 
an additional 4,000 MW over the next decade.  Some of the benefits of CSP technology is 
that it can ovide power during peak demand periods. Problems of solar intermittency 
can be overcome with thermal storage or hybridization with natural gas, allowing plants 
to dispatch power to the grid into the evening hours.   
 

ll of the existing commercial CSP power plants in the U.S. are parabolic trough systems 

gas, 
ey 

t designs – sola d 
all amount of water for mirror washing.18 The first 

managers are thus familiar with the power-generating portion of these plants.  Thermal 

 

ercial scale in

 a

pr

A
that use a Rankine steam cycle to convert their thermal energy to electricity. This part of 
the solar plant, referred to as the power block, is similar to that used by coal, natural 
and nuclear power plants. These power plants achieve the highest efficiencies when th
are water-cooled.  All operating CSP plants in the U.S. employ evaporative water 
cooling. The use of water for power plants is becoming constrained.17 For the CSP 
industry, there is a strong incentive to investigate alternative cooling approaches that 
minimize the use of water.  The most promising of those approaches will be discussed 
later in this report.  
 
Concentrating Solar Power Technologies 
 
There are four primary CSP plan
dish/engine.  All designs use a sm
three of these technologies operate a steam cycle and require some water for steam 
makeup and, when they are water-cooled, require a substantial amount of water for heat 
rejection in a similar way as do water-cooled fossil and nuclear plants.

r trough, linear Fresnel, power tower, an

19  The Rankine 
steam cycle is typical of what is employed in a fossil fueled power plant. Utility 
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storage can be integrated with these three systems, to enhance dispatchability, allowing 
the solar plant to produce electricity into the night to meet peak demand periods.  
 
 
Parabolic Troughs 

tion 

 systems 

 

ield. 

 are the most developed and commercially 
tested technology and have operated at a cap ity of 350 MW in the Mojave Desert for 
over 15 years. A new 64 M s Vegas (Figures 5 
and 6). A number of larg  Southwestern U.S. 

 
Parabolic trough systems concentrate solar radiation, specifically direct normal insola
(DNI), onto a receiver tube located along the focal line of a single-axis tracking 
parabolically curved, trough-like reflector. Heat transfer fluid flowing through the 
receiver tube absorbs the thermal energy.  The heat is collected and used to generate 
steam which is produces electricity by a Rankine cycle turbine-generator. Trough
can be hybridized (natural gas can be burned to produce steam when the sun isn’t 
shining) or can use thermal storage to dispatch power to meet utility peak load 
requirements (Figure 4). 

 
 

 

 

Figure 4: Parabolic trough system schematic 

The operating temperature of trough plants is limited by the thermal property of the heat 
transfer fluid (HTF) that is suitable for pumping through miles of piping in the solar f
In typical applications, oil flowing through the receiver tube is heated to about 390°C and 
used to boil water to produce steam. The resulting steam is used in a Rankine power 
cycle and expanded through a turbine connected to an electric generator. As with any 
steam cycle, the exhaust steam is cooled and condensed back to liquid water to be 
recirculated in the cycle. The condensers can be either water-cooled or air-cooled, or a 
hybrid combination. Parabolic trough system

 

 

s
ac

W trough plant was recently built near La
e trough projects are being planned in the
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Linear Fresnel 
 
This technology (see Figure 7) is a line-focus 
technology similar to troughs in that it consists of 
reflectors that track the sun in one axis and focus 
the beam radiation onto fluid-carrying receiver 
tubes. The difference is that it uses a series of 
ground-mounted mirrors, and the receive

Figure 5: 64 MW Nevada Solar 1 Solar Plant Figure 6, Nevada Solar 1 solar collector

r tube is 
levated above the mirrors and fixed. The optical 
fficiency is lower than that of troughs, but this 
chnology offers the promise of cost savings and 
duced land use, associated with the tight spacing 

nd ground location of the mirrors and a fixed 
ceiver. A current design being marketed 

mploys water directly in the receiver tubes where 
 is boiled at about 50 bars of pressure (50 times 
tmospheric pressure) to produce saturated 
eam at 535°F, which powers a steam cycle.  
nother proposes to use molten salt in the 
ceiver tube.  As of yet, there are no commercially operating power-generating systems 

mploying this technology, but some are planned. 

e
e
te
re
a
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e
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A
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Power Towers
 
Power towers utilize a field of tracking mirrors, called heliostats, which reflect the sun’s 
rays to a receiver located on top of a tall, centrally located tower (see Figure 8). The solar 
energy is absorbed by pressurized water or molten salt working fluid flowing through the 
receiver.  

 

ure 7, Linear Fresnel collector (Ausra)Figure 7: Linear Fresnel collector (Ausra)
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Figure 8: 10 MW power tower pilot project, Barstow, CA
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perating temperatures, the performa
ffected by the higher condenser temperatures associated with dry cooling than line focus 
chnologies. 

ish/Engine Systems

The operating temperature is higher than
line-focus collectors (parabolic troughs and 
linear Fresnel) but lower than for a dish (s
below). Power towers can be coupled with a
molten salt energy storage system, allowing 
energy to be stored at 1050°F. When 
needed, hot salt is removed from the stora
tank and used to generate steam to drive a
conventional Rankine steam-turbine power 
block. A 10 MW power tower has been bu
in Spain (where three more are under 
development, one of which is slated to have
sixteen-hour molten salt storage), and 
another is under development in South Africa. Like other collectors that provide heat 
Rankine steam cycle, heat rejection is needed to condense the steam, and this can be air 
or water cooling, or a hybrid. Some studies have found that this technology has p
for lower costs than line-focus collectors, but this is only for large plant sizes. Because of
their higher o nce of tower systems is somewhat less 
a
te
 
D  

ndividual parabolic-shaped dish 
enerator that uses the Stirling 
 without producing steam. Because it 

mount of direct (or beam) solar 
ecause of its high concentration ratio, it can achieve very 

high temperatures (about 1452°F) and high efficiencies, converting over 30% of the 
/engine units currently range from 1 to 25 

 
As shown in Figure 9, this concept uses a field of i
reflectors that each focus sunlight onto an engine/g
thermodynamic cycle to directly produce electricity
tracks the sun in two axes, it captures the maximum a
radiation throughout the day.  B

sunlight to electrical energy.20 Individual dish
kW in size. Power plants of any size can be built by installing fields of these system
They can also be installed on uneven land. 
 

s. 

 
Figure 9:  Prototype 150 kW dish/Stirling power plant at Sandia National Laboratory 

 
There are no commercial dish installations yet, but two large systems are being
for southern C

 planned 
alifornia. Efforts are underway to minimize the cost and maximize the 
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reliability of the Stirling engines. The engines are air-cooled. Their high operating 
h efficiencies without water cooling, and no water is needed other 

an for mirror cleaning.  From a water use perspective, dishes are well suited for 

t CSP Cooling Options 

Because of water limitations, dry cooling and hybrid wet/dry cooling systems are being 
implemented and considered for both fossil and CSP generating plants. The technical 
challenges and performance limitations facing CSP are comparable to those of new fossil 
and nuclear power generating plants.   
 
Dry cooling methods are increasingly common for thermal power plants.  The 
disadvantages of dry cooling are higher capital costs, higher auxiliary operating power 
requirements, fan noise, and an overall lower plant performance, especially on hot days, 
when the peak power is needed most.22  The relative cost impact to CSP is similar to that 
of foss

 

cle 

eneral 

 

r ooling when employed for any of these plants will reduce water 
onsumption to zero for the heat rejection system of a Rankine power system, requiring 

 and miscellaneous 
h for cycle 

tion tube, is estimated to require somewhat 
uced 

temperatures allow hig
th
operation in regions with minimal available water. 

However, unlike the other CSP technologies discussed here, this technology does not 
easily lend itself to thermal storage, and so these systems are designed to provide 
electricity only when the sun is shining. This is a disadvantage to utility scale production 
in markets where firm generation is required and when the peak load period extends into 
the evening hours.21  

 
Comparison of Water Usage for Differen
 

il power plants.   
 
In a Rankine steam cycle, heat is input at a high temperature (the source temperature) and
rejected at a low temperature (the sink temperature). The difference between the heat 
input and the heat rejected is the work done by the turbine. The efficiency of the cy
(the ratio of the turbine work done to the heat input) is a function of the difference 
between the source and sink temperatures. Lowering the sink temperature will in g
increase the cycle efficiency. 
 
An air-cooled plant will operate at a lower efficiency than a water-cooled plant. Plants
that heat the steam to a higher temperature will be less susceptible to changes in the sink 
temperature. Thus the performance of power tower which operates at a higher steam 
temperature will be penalized less by air cooling than current trough plants or linear 
Fresnel designs.  D y c
c
only a minimal amount of water for boiler blowdown, mirror washing
omestic plant uses. A dry-cooled trough plant requires about 80 gal/MWd

makeup and mirror washing.23  This compares to a wet-cooled plant that requires 800 
gal/MWh.5
 
Based on thermodynamic principles, a water-cooled linear Fresnel reflector plant which 

enerates steam directly in the heat collecg
more water than a trough plant owing to its lower operating temperature and red
cycle efficiency (greater heat rejection per MWh of electricity). Conversely, a power 
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tower with a conventional Rankine cycle would presumably use somewhat less water, 
approximately 600 gal/MWh similar to a coal plant, by virtue of its higher operating 
temperature and efficiency.  
 
Hybrid wet-dry systems have been used which allow the plant to maintain design or near-
design performance, albeit at a higher cost for the cooling system (compared to water 
cooling), while having much lower water usage than a wet evaporative cooling system. 
 
Once-through Water Cooling 
 
Once-through water cooling returns all of the withdrawn water to the source.  Although it 

 

ore 

 Water Cooling

does not consume any water in the cooling process, it does increase the temperature and
hence the evaporation rate from the body of water.  This cooling method is limited in 
application and is not typically available for a solar power plant. It is also becoming m
restricted in California, for example, because of the potential environmental 
consequences of returning water at an elevated temperature to the environment, and 
potential mortality of aquatic life due to impingement where the fish are trapped against 
the intake structure and entrainment, which means organisms are pulled through the 
cooling system.24   
 
Evaporative  

 
e 

 gal/MWh.   

otential source of environmental hazard due to the high concentrations of salts.  Also, 
 water with treatment chemicals which drifts into the 

mbient air and can be source of PM10 (particulates less than 10 microns in diameter) 

ooling uses 

 
The most common cooling method for new power plants is evaporative cooling.  This is 
an economical and high performing power plant cooling technique.  The waste heat 
energy dissipated from the power plant is rejected to the air via evaporation of the 
cooling water.  Typically the evaporation takes place in a cooling tower. This method 
consumes a considerable amount of water.  On a national average, the amount of water
consumption of all thermal power generation, using both once-through and evaporativ
cooling, is approximately 470 25

 
The water treatment chemicals and minerals contained in the water being evaporated 
become concentrated over time, which requires a portion of the cooling water to be 
drained to remove particulates and salts.  This discharge (called “blowdown”) is a 
p
some concern must be given to
a
pollution, which is restricted by regulations.26    
 
Parabolic trough power plants in production today use evaporative water cooling and 
consume roughly the same amount of water as a coal-fired or nuclear power plant, using 
recirculating evaporative cooling. A typical parabolic trough plant with wet c
about 800 gal/MWh (780 for evaporation and water make-up, and 20 for mirror 
washing). These values compare to 500 gal/MWh for a stand-alone steam plant and 200 
gal/MWh for a combined-cycle natural gas plant.1, 3, 4  
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Dry Cooling 
 
Dry cooling is becoming more prevalent in new power plants because of various state and 
federal water limitations.  Dry cooling uses very little water.  All of the waste heat from
the power plant is rejected to the air.  However, a significant temperature difference is 
needed to provide adequate heat exchange, and so the condenser temperature is about 30
50 F higher than the ambient air temperature

 

-
.  This results in a higher condensate 

mperature on hotter days which, in turn, raises the condenser pressure causing the 
ive 

s—

te
steam turbine to be less efficient, see Figure 10.  Dry cooling systems are more expens
and result in lower plant thermal efficiency, especially in hot climates and on hot day
typically when and where peak power is most in need.27  
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ith dry cooling, the most straightforward way to minimize water use is to route exhaust 
steam directly to air-cooled condensers (ACCs). Typically the steam passes through an 
array of tubes and air is blown by a fan across the array. These systems can require 
considerable fan power. 
 
A comparison of the performance and economics of a water-cooled trough plant located 
in Daggett, California to an air-cooled one showed that the performance of the air-cooled 

Figure 10: Plant output as a function of condensing temperature and turbine back pressure for a dry 
cooled plant optimized for low and high back pressure conditions 

 
W
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system dropped off significantly at ambient air temperatures above 100°F.28 The air-
cooled plant provided about 5% less electric energy on an annual basis than the water-
cooled plant, because of reduced performance on hot summer days. The electricity cost 
for the air-cooled plant was 7 to 9% higher than for the water-cooled plant. Thus air 
cooling of a trough plant can be used to minimize water use, but at a 7 to 9% cost 
penalty. 
 
It is important to note that the impact of air cooling on levelized electricity cost depends 
on plant location. Air cooling of a trough plant located in New Mexico, for example, is 
estimated to raise the cost of electricity by only about 2% because the highest daytime 
temperatures at the site are significantly lower than those in the Mojave Desert.29

 
An analysis of a 250 MW plant design in Daggett, California looked at the performance 
penalties of dry cooling for both a parabolic trough power plant producing 700°F steam 
and a power tower plant producing 1000°F steam.30 It showed a 5% performance penalty 
for a trough plant and less than a 2% penalty in the power tower plant. The study 
concluded that the drop in annual electric output for an air-cooled trough plant is 4.6% 
compared to 1.3% for the power tower. But the report also looked at the impact during 
the hottest 1% of the operating hours. For those hours, the air-cooled trough plant 
suffered a 17.6% drop in performance, whereas the power tower plant suffered a 6.3% 
drop in performance. If electricity is priced very high during those periods, the financial 
impact could be significant. Regarding capital costs, the study found that a dry cooling 

 
ower temperature plants will have an inherent thermodynamic performance penalty.  In 

, 
ling.   

er 

system costs about 3 times that of a water-cooling system. 

L
a separate study, a model comparison of a 700°F and a 1000°F steam plant indicated that 
the performance degradation at a high ambient temperature (110°F) would be 14% and 
13% respectively.30  When plotted over the range of temperatures for Daggett, California
the annual MWh output would be about 0.5% less for the trough plant using dry coo
 
Another study concluded that if the solar field is increased in size to offset the reduced 
steam cycle efficiency, the resulting net present value (NPV) impact is less than if the 
solar field is unchanged.10 The increased solar field allows for higher steam production to 
offset the higher backpressure during high ambient temperature periods. 
 
No analyses are yet available for a linear Fresnel system.  Current designs operate at a 
lower temperature than a trough plant; therefore, one would expect a somewhat great
performance penalty from dry cooling.  
 
Hybrid Wet/Dry Cooling 
 
Hybrid wet/dry cooling systems can be divided into two broad categories: those aimed a
plume abatement and those aimed at reducing water consumption.  Plume abatement 
nvolves reducing the water vapor plume from a wet cooling tower to eliminate 

t 

its 

 

i
appearance or to avoid winter icing on nearby roads. It is generally not an issue at CSP 
plants, which are typically located in dry, remote areas. Of greater interest for CSP plants

Page 14 of 24 



are hybrid designs that reduce water consumption compared to wet cooled plants and 
enhance performance in warm weather compared to dry-cooled plants. Hybrid sys
typically either involve separate dry and wet units that operate in parallel or use water to
evaporatively cool the air going to the air-cooled condenser.  
 
The parallel cooling system is shown in Figure 11. Here a dry cooling system is the 
primary heat rejection system, and it consumes no water.  The dry cooling system is used
exclusively for the majority of the time.  On hot days, its performance is enhanced by 
routing a portion of the steam leaving the turbine to a separ

tems 
 

 

ate wet cooling system which 
 only rejecting a portion of the total waste heat.  By reducing the load on the air-cooled 

d 

lthough it is more expensive than a water-cooled plant, it should be less expensive than 

is
condenser, the dry unit can bring the condensing steam temperature closer to the design 
condenser temperature on hotter days. A hybrid system uses a fraction of the water that a 
traditional wet cooling system would use, and the turbine performance can be maintaine
at or close to design conditions.  Such a system would have a small wet cooling tower 
and would typically have a smaller air-cooled condenser than an air-cooled plant. 
A
an air-cooled plant.10  

 
Figure 11: Hybrid wet/dry parallel cooling system (PCS) 

 
An analysis was performed to compare the parallel cooling system design to simple dry 
and wet cooling for a parabolic trough plant in the Southwestern United States.31 For the 

et-cooled runs, plant performance was found to be relatively independent of amw bient 
e 

 

temperature. For the dry-cooled cases, performance dropped off at temperatures abov
100°F. For various hybrid cases over 97% of the performance can be obtained with only 
10% of the water usage and 99% of the performance can be obtained at half the water 
usage.  Figure 12 provides a graphical summary of performance of the PCS plant as a 
function of how much water is used. The data points are labeled by the operating pressure
of the condenser that the cooling system can maintain at design conditions.  A larger wet 
section of the hybrid cooling system will consume more water, but can maintain a lower 
backpressure and hence higher annual power output.  The design operating condenser 
pressures of the various hybrid systems are expressed in inches of mercury absolute (in 
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HgA).  One inch of mercury absolute is approximately equal to 0.5 psia.  Each of t
points is expressed as a fraction of the value for the wet-cooled plant.  
 

he data 

0.94
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of wet cooling tower water consumption

Figure 12: Power plant output as a fraction of the output for an evaporatively cooled plant vs. the 
fraction of water consumed. 

 
Table 1: Net Present Value for Alternative Cooling Technologies relative to Wet Cooling.
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32

 
 Dry Cooling Technology Hybrid Cooling Technology 
 Same Solar 

Field Size  
Solar Field 

Size Increased 
Same Solar 
Field Size 

Solar Field 
Size Increased 

Annual Net Generation Impact 
relative to Wet Cooling (MWh) -45,162 0 -27,756 0 

Annual Revenue Impact 
relative to Wet Cooling -$6,774,350 $0 -$4,163,410 $0 

O&M Net Present Value (NPV) 
relative to Wet Cooling b $12,980,000 $12,980,000 $5,870,000 $5,870,000 

Generation Revenue NPV 
Relative to Wet Cooling -$63,860,000 $0 -$39,250,000 $0 

Capital Expenses Relative to 
Wet Cooling a $20,497,000 $73,497,000 $12,930,500 $43,930,500 

Total NPV Impact relative to 
Wet Cooling -$71,100,000 -$60,100,000 -$46,300,000 -$38,000,000 

LCOE Impact increase over 
Wet Cooling ($ / kWh) .014 .011 d .009 .007 d

Estimated Water Consumption c 43 gal/MWh 338 gal/MWh 

a  The capital costs show in the table include cooling equipment, boiler feed water pumps, HTF pumps, 
and solar field addition for the case where the solar field size is increased. 

b  O&M Expenses include water treatment, operating, and water pumping costs 
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c Wet Cooling water consumption compares at 865 gal/MWh.  From Tables 6 and 7 of reference 32. 
d LCOE adjusted by adding increased annual revenue over constant solar field size. 
 
Table 1 gives a financial comparison of an air cooled condenser (dry), and (hybrid) ACC 
parallel with a wet cooling tower, relative to evaporative cooling tower (wet).  Costs of 
each system including capital equipment, installation, water treatment, solar field, and 
operation and maintenance (O&M), were considered along with the estimated 
performance and revenue based on historical climatology data and current value for 
power generated in the southern California area.    
 
If there is water available, the PCS is a water-saving alternative. On the other hand, both 
a wet and dry cooling system will have to be maintained and the wet system may be 
cycled in and out of operation  These two facts will increase the maintenance costs of the 
cooling system.   
 
Table 2 summarizes the amount of water presently consumed by power plants throughout 
the U.S. and the options available to CSP for reducing water consumption. 

Table 2: Comparison of consumptive water use of various power plant technologies using various 
cooling methods 

Technology Cooling Gallons Perform. Cost 
MWhr Penalty* Penalty** Reference

 Once-Through 27,000***   1, 3 23,000 – 

Coa  l / Nuclear Recirculating 400 - 750   1, 3
 Air Cooling  50 - 65  1, 3 
      

Natural Gas Recirculat   ing 200 4 
      
 Recirculating 500 - 750   (estm.) 

Po bina
ar 90-250 1-3% 11 wer Tower Com tion 

Hybrid P allel 5% 10, 

 Air Cool 90  ing 1.3% 9 
 Recircula 800  5 ting  

Parabolic 
Trough 

Comb
Hybrid

ination 
 Pa 00 -4  7,  

A rallel 1 -450 1 % 8% Appx. 
 Air Coo 5- %ling 78 4. 5% 2-9  6, 9 
      

D  Washi 20   5 ish / Engine Mirror ng 
      

Fresnel Recirculating 1000   (estm.) 
 
  
For using a less water intensive cooling technique: 
*    = Annual energy output loss is relative to the most efficient cooling technique. 
*  = Added cost to produce the electricity. *
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***= Majority of this amount is returned to the source but at an elevated temperature. 
 
 
Alternate and Future Technologies 
 
Another type of hybrid system evaporatively cools the air-cooled condenser on those hot 

ays when the air cooler cannot maintain low condenser pressures. This method currently 

erformance and economic modeling of a 30 MW air-cooled parabolic trough plant near 
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to water cooling, the spray cooling decrea l w mption by 32% (from 
8 o 584 g and decr ann 6
this performance imact, economic benefit would be re   water was 
over $1  per 1000 g ty pr  per kWh.  Typical municipal water 

 $4.0 llons,  lower if degraded water is used.  
d sy ver 4 h flow an the air- oled syst

 
Another option is to use an indirect air-cooling system called a Heller cycle. In this 
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rou nel sys .  Advanc  power tow rs are bein
designed for higher operating te eratures that could allow the use of gas turbines 
instead of steam turbines, possibly eliminating the need for cooling water.35

mmary  

wer 
wable electricity standards. Dish systems 

near Fresnel, and power towers use the heat of the sun to power conventional Rankine 
eam cycles. As with fossil and nuclear-power plants, water cooling is preferred to 

d
has limited commercial use.  The air approaching the air-cooled condenser is cooled by 
water spray nozzles or by passing the air through wetted media. It is also possible to 
directly deluge the finned heat transfer tubes in the air coolers with a flow of water.  
 
P
Daggett, California was done to evaluate the impact of spray nozzles for pre-cooling the 
air.33 The analysis showed that water cooling is more economical over a wid
lectricity prices and water costs. Water cooling is generally favored whenever water is 
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Utilities are showing increasing interest in the deployment of concentrating solar po
plants to meet the requirements of state rene
which already use air cooled engines, need only water for mirror cleaning. Troughs, 
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minimize cost and maximize cycle efficiency. However, there are concerns about 
ounting water shortages and air pollution associated with evaporative cooling towers. 

t/dry 
oolers is estimated to reduce the energy cost penalty to below that of air cooling alone 

m
Analyses indicate that the use of either direct or indirect dry cooling can eliminate over 
90% of the water consumed in a water-cooled concentrating solar power plant. However, 
a combination of a reduction in power output and the added cost of the air cooling 
equipment is estimated to add roughly 2 to 10% to the cost of generating electricity, 
depending on the plant location and other assumptions. The use of hybrid parallel we
c
while still saving about 80% of the water compared to a water-cooled plant.  
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OL = Open loop cooling, CL = Closed Loop Cooling, CC = Combined Cycle 
*IGCC = Integrated Gasification Combined-Cycle, includes gasification process water 
Other Use includes water for other cooling loads such as gas turbines, equipment washing, 
emission treatment, restrooms, etc. 
**References did not specify whether values are for withdrawal or consumption. 
 

The general calculation for estimating water consumption of a typical thermal power plant is as follows.  
Given a steam turbine net efficiency of 37%, the heat rejection per MWh will be: 

3.412x106 btu/MWh x [(1/37%)-1] = 5.81 x106 BTU/hr 
Assume 90% of heat is rejected by latent heat of evap,  latent heat capacity of water to be 1000 BTU/lb, 
and water density of 8.33 lb/gal: 
 5.81 x106 BTU/hr x 90% / (1000 BTU/lb x 8.33 lb/gal) = 628 gal/MWh evaporation 

 
4 DOE (2006). p. 38 Table V-1 and NETL (2006) p. D-1. 

From the calculation above (Endnote 3), approximate water consumption rate for a combined cycle plant 
is 630 gal (170/500) = 255 gal / MWh plus aux loads. 
In the table of NETL(2006) p. D-1, natural gas combined cycle (NGCC) plants with recirculating cooling 
consume on average 130 gal / MWh.  The surveyed ranges of NGCC consumption rates are not provided. 

 
5 Cohen, G. E., Kearney, D. W., & Kolb, G. J. (1999).  Final Report on the Operation and Maintenance 
Improvement Program for Concentrating Solar Power Plants.  Usage listed is raw water usage and assumed 
to be withdrawal rate.  Consumption rate approximated from 90% of the withdrawal rate.  p. 30-31 
 
6 .  WorleyParsons.  Wet and Dry Cooling Options for a 250 MW Thermal Plant
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 0.374 gross cycle efficiency 0.321 gross cycle efficiency 
 0.082 bar condenser pressure 0.250 bar condenser pressure 
   0.860 hot day output / design day output 
   0.860 hot day efficiency / design day efficiency 
 
Central Receiver Plant: 1850 psig / 950 F / 950 F Rankine cycle 
 70 F ambient temperature 108 F ambient temperature 
 139.9 MWe gross plant output 121.7 MWe gross plant 
 0.412 gross cycle efficiency 0.361 gross cycle efficiency 

0.082 bar condenser pressure 0.252 bar condenser pressure 
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Tucum ower Stati 99 1997 (Combined Cycle) 
Grumm n 1997 (Combined Cycle) 
SEMASS WTE Facility 54 407500 3.5 59 1999 (W-T-E) 
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temperature increases from the design
 
This is not a completely representative set of annual performance analyses, and t

re.  H
performance penalty for a parabolic trough plant compared to a tower plant is not as significant as sh
the above reference. 
 
10 WorleyParsons. (2008)   FPLE - Beacon Solar Energy Project:  Dr
R t No. FPLS-0-LI-450-0001. W  Job No. 52002501. Table 8. 
 
11 AC SYSTEM® Installation Li

EA Power Cooling Systems, LL
nion B te 400 
ood 8 

tation Owner (A/E) (MW r) H A) (Deg F) 
Size BP (in Temp 

Steam Turbine Des

xeter Energy L. P. Project 00 2.9 75 19
reeter Generating Station 00 3.5 50 19

an P on 150 1150000 5 
a  13 105700 5.4 59 

Page 21 of 24 



                                                                                                                                                 

al Fired) 
Afton Generating Station  100 594981 5 98 2006 (Combined Cycle) 

exant Parabolic Trough Solar Power Plant Systems Analysis; Task 2 Comparison of 
et and Dry Rankine Cycle Heat Rejection. National Renewable Energy Laboratory, NREL/SR-550-40163 

best land area, CSP projects could provide about 11,000,000 MW or 
26 t, the entire U.S. uses about 4,000,000 GWh per year. Thus, on 9.2 
pe  CSP projects could generate over 6 times the power needed by the U.S. 
T an 1.5 percent of the land in the southwest, CSP projects could theoretically 
ge ry uses. 
 
State Total Land Area 

i2) 
 Ar t 

P  
 Capacity Solar Generation 

ty (GWh) 

Goldendale Energy Project 110 678000 4.5 90 2000 (Combined Cycle) 
Comanche, Unit 3 750 3374300 3.73 97 2006 (Co

 
12 Appendix A. 
 
13 Kelly, B. (2006). N
W

and 
    Appendix A. 
 
14 From NREL analysis– selecting the 

,400,000 GWh. To put this in contex
rcent of the southwestern land

his means that on less th
nerate as much energy as the count

Land
for CS

ea – Bes
projects

Solar
(MW) (m Capaci

(mi2) 
A  1,7 61 Z 113,600 13,613 42,4 4,121,268 
C 000 803  A 156, 6,278 ,647 1,900,786 
C 103,700 797  O 6,232 ,758 1,886,858 
N 0 1,4 80 V 109,80 11,090 19,4 3,357,355 
N  2,6 85 M 121,400 20,356 05,5 6,162,729 
TX 26 00 815  1,9 6,374 ,880 1,929,719 
UT 82,200 9 23 23,288 2, 80,8 7,050,242 
Total 948,600 87,232 11,165,633 26,408,956 

Land area deemed “best” for CSP is from an analysis that has no primary use today, excludes land with a 
slope greater than 1 percent, does not count sensitive lands, and has a solar resource of 6.75 kWh/m2/day. 
Solar capacity assumes 5 acres/MW and a 27 percen  capacity factor. t annual
 
15 The Resources Agency of California. (September 2, 2003). Background information and staff 

). Comparison of Alternate Cooling Technologies for 
rnia Power Plan iron ra terest 
-079F, Februa  1-3

 
18  DOE Solar Tech ram Mu  Plan 2008-2012

tional Renewabl ratory.  lic Trough FAQ r washing u imately 
l/MWh. March 2 rom: http://w /csp/trou tml#water

recommendation on power plant water use.  Memorandum from CEC to Integrated Energy Policy Report 
Committee. 
 
16 Cohen, Kearney & Kolb (1999) 
 
17 CEC, California Energy Commission (2002
Califo
500-02

ts: Economic, Env
ry 2002..  pp. 1-1 –

mental and Other T
. 

lti-Yea

deoffs, Public In Energy Research, 

 US
 

nologies Prog r   

19 Na e Energy Labo Parabo ’s.  Mirro se is approx
20 ga 2, 2008 f ww.nrel.gov ghnet/faqs.h
 
20 Sandia National La February 12 ia, Stirlin stems set rd 

olar-to-grid conv ciency.  New se retrieved M 008 from: 
ia.go esources/relea /solargrid.htm

boratory ( , 2008). Sand g Energy Sy new world reco
for s ersion effi s relea arch 30, 2
http://www.sand v/news/r ses/2008 l
 
21 WorleyParsons. (2008).  FPLE - Beacon Solar Energy Project:  Dry Cooling Evaluation.  WorleyParsons 
Report No. FPLS-0-LI-450-0001. WorleyParsons Job No. 52002501. 

Page 22 of 24 



                                                                                                                                                 

ratory, NREL/SR-550-40163 

r 

001), Environmental Performance Report of California’s Electric 
ly 2001. P. 39 

 13.  Retrieved from : 

 
22. Kelly, B. (2006). Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2 Comparison of 
Wet and Dry Rankine Cycle Heat Rejection. National Renewable Energy Labo
 
23 WorleyParsons (2008). P 15 and 16 show the water requirements for a dry cooled plant of 79 acre-ft pe
year  and the corresponding annual energy production of 557,365 MWh. 
 
24 California Energy Commission (2

eneration Facilities.  P700-01-001, JuG
 
25 Torcellini, P.; Long, N.; Judkoff, R. (2003). Consumptive Water Use for U.S. Power Production. 
NREL/TP-550-33905. 
 
26 USEPA. AP-42.  Compilation of Air Pollutant Emission Factors.  Ch

ttp://www.epa.gov/ttn/chief/ap42/ch13/final/c13s04.pdfh
 
27 Maulbetsch, J. S., and M. N. DiFilippo. 2006. Cost and Value of Water Use at Combined-Cycle Power 
Plants. California Energy Commission, PIER Energy-Related Environmental Research. CEC-500- 

Inc. A Bechtel-
ffiliated Company.  San Francisco, California. 

alo Alto, CA, PNM 
n Diego Gas & 

enver, CO: 2008. 1016342.. p. 5-7 

Plant.. 

erformance at 70 F and 108 F for the two plant designs as follows: 

2006-034. 
 
28 Kelly, B. (2007). Comparison of Wet and Dry Rankine Cycle Heat Rejection. Nexant, 
A
 
29 New Mexico Central Station Solar Power: Summary Report. EPRI, P

esources, Inc., Albuquerque, NM, El Paso Electric Co., El Paso, TX, SaR
Electric Co., San Diego, CA, Southern California Edison Co., Rosemead, CA, Tri-State 
Generation & Transmission Association, Inc., Westminster, CO, and Xcel Energy Services, Inc., 
D
 
 
30 WorleyParsons.  Wet and Dry Cooling Options for a 250 MW Thermal 
 

and 
 
Provided by Bruce Kelly (email correspondence): 
GateCycle models for parabolic trough and central receiver plants which use air cooled condensers 
compared the relative p
 
Parabolic Trough Plant: 1450 psig / 710 F / 710 F Rankine cycle 
 70 F ambient temperature 108 F ambient temperature 

139.5 MWe gross plant output 119.9 MWe gross plant 

0.860 hot day output / design day output 
  0.860 hot day efficiency / design day efficiency 

 F Rankine cycle

 
 0.374 gross cycle efficiency 0.321 gross cycle efficiency 
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Central Receiver Plant: 1850 psig / 950 F / 950  

70 F ambient temperature 108 F ambient temperature 

day efficiency / design day efficiency 

 
 139.9 MWe gross plant output 121.7 MWe gross plant 
 0.412 gross cycle efficiency 0.361 gross cycle efficiency 
 0.082 bar condenser pressure 0.252 bar condenser pressure 
   0.870 hot day output / design day output 
   0.875 hot 
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Further analysis stemming from the study conducted in the reference 1 of this Appendix, 
also referenced in footnote 13 of the main report evaluated the impact of hybrid cooling.    
 
13Kelly, B. (2006). Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2 

Comparison of Wet and Dry Rankine Cycle Heat Rejection. National Renewable 
Energy Laboratory, NREL/SR-550-40163 

 
1.   Introduction 
 
The plant design parameters used for this analysis are as follows:  
 
• 274 MWe gross plant output 
 
• Two Rankine cycles, each with a nominal gross rating of 137 MWe 
 
• Two collector fields, each with an aperture area of 1,030,000 m2

 
• Two thermal storage systems, each with a nominal capacity of 1,096 MWht.  The 

storage capacity is sufficient to operate the Rankine cycle at full load for 3 hours, and 
the energy from storage is dispatched such that the Rankine cycle is operated at full 
load for the fewest number of hours each day (i.e., no load shifting) 

 
• The 30-year solar radiation and weather file for Barstow, California is assumed to be 

applicable for A Southwest desert site 
 
• The design point for the wet heat rejection system is assumed to be as follows:  2.5 in. 

HgA condenser pressure; 104 °F dry bulb temperature; and 64 °F wet bulb 
temperature. 

 
• The design point for the dry heat rejection system is assumed to be as follows:  2.7 in. 

HgA turbine exhaust pressure; 2.5 in. HgA condenser pressure; and 70 °F dry bulb 
temperature.  The 0.2 in. HgA difference between the turbine exhaust pressure and 
the condenser pressure is the pressure loss in the steam duct between the exhaust 
flange and the condenser inlet.  The 70 °F dry bulb temperature is the result of the 
2006 optimization study on wet and dry heat rejection systems (reference 1). 

 
Three heat rejection systems were evaluated: 
 
1) A wet system, including mechanical draft cooling towers, a surface condenser, 

vacuum pumps, circulating water pumps, underground circulating water pipes, a 
water treatment system for cooling tower makeup, and an evaporation pond for the 
cooling tower blowdown.  A schematic diagram of the system is shown in Figure 1. 

 
2) A dry system, including an air cooled condenser and vacuum pumps.  A schematic 

diagram is illustrated in Figure 2. 
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Figure 1  Schematic Diagram of Wet Heat Rejection System 

 
Figure 2  Schematic Diagram of Dry Heat Rejection System 

 

 
Figure 3  Schematic Diagram of Hybrid Heat Rejection System 
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3) A hybrid system, which uses an air cooled condenser in parallel with a wet, 
mechanical draft cooling towers.  A schematic diagram of the equipment arrangement 
is shown in Figure 3.  On high ambient temperature days, the wet system is placed in 
service.  A portion of the turbine exhaust condenses on the surface condenser, and the 
balance of the flow is condensed in the air cooled condenser.  The reduced thermal 
demand on the air cooled condenser allows a closer approach to the dry bulb 
temperature, which results in a lower turbine exhaust pressure than achieved with a 
dry system alone.  The hybrid system consists of an air cooled condenser, vacuum 
pumps, and all of the equipment associated with the wet system, but with smaller 
equipment capacities than required in Item 1. 

 
The hybrid cooling study was conducted through the following steps: 
 
• Six performance models were developed of a 137 MWe Rankine cycle using the 

GateCycle program [Reference 2]; one for wet heat rejection, one for dry heat 
rejection, and four for hybrid heat rejection.  The hybrid cases included equipment 
sizes sufficient to maintain maximum condenser pressures of 2.5, 4.0, 6.0, and 8.0 in. 
HgA throughout the year 

 
•  Calculations of the thermal output from the collector field, and the thermal input to 

the steam generator, were developed for each hour of the year 
 
• For each of the 3,421 hours of solar operation each year, the thermal input to the 

steam generator, and the ambient temperatures, were used to calculate the steam flow 
rates, gross electric output, and auxiliary electric power requirements for the cooling 
tower fans and Rankine cycle pumps.  The results were exported to an Excel file, 
from which the annual gross and net outputs and efficiencies were calculated. 

 
• Capital cost estimates were developed for each of the 6 heat rejection systems. 
 
• Operating cost estimates for the makeup water treatment system for the wet and the 

hybrid heat rejection systems were developed. 
 
2.   Power Plant Design 
 
The performance model for the Rankine cycle, various design parameters for the heat 

rejection systems, are discussed in the following sections. 
 
2.1  Rankine Cycle 
 
The Rankine cycle design follows a conventional, single reheat design with 5 closed and 
1 open extraction feedwater heaters.  The main steam pressure and temperature are 1,465 
lbf/in2 and 703 °F, respectively, and the reheat steam temperature is 703 °F.  For all of the 
heat rejection cases, the design condenser pressure is 2.5 in. HgA.   
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2.2  Wet Heat Rejection 
 
The wet heat rejection system is based on conventional, mechanical draft cooling towers.  
The principal design parameters include the following: 
 
• 104 °F design dry bulb temperature; 10 percent relative humidity 
 
• 10 °F cooling water approach to 64 °F wet bulb temperature 
 
• 20 °F circulating water temperature range 
 
• 224 MWt duty 
 
• 6 cycles of concentration 
 
The cooling tower consists of 10 cells, each with a 125 bhp fan.  The circulating water 
flow rate is a nominal 76,000 gpm, and the makeup water flow rate is 1,930 gpm.  Of the 
makeup water flow, 83 percent is to compensate for evaporation losses, 13 percent for 
blowdown, and 4 percent for drift losses. 
 
The circulating water system includes the following: 
 
• Two 50 percent capacity pumps, each rated at 38,000 gpm and driven by a 750 bhp 

electric motor 
 
• A surface condenser, with a nominal area of 160,000 ft2 

 
• Supply and return circulating water pipes, with a diameter is 60 inches.  The distance 

from the cooling towers to the surface condenser is assumed to be 200 feet. 
 
2.3  Dry Heat Rejection 
 
The dry heat rejection system is based on a mechanical draft, air cooled condenser.  The 
principal design parameters include the following: 
 
• 109 °F steam condensing temperature at 70 °F dry bulb temperature (39 °F initial 

temperature difference) 
 
• 2 °F condensate subcooling at condenser outlet 
 
• 224 MWt duty 
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The cooling tower consists of 15 bays, each with a 300 bhp fan.  The condensing section 
is fabricated from oval carbon steel tubes, with aluminum fins.  The total heat transfer 
area, including the tubes and the fins, is approximately 5,250,000 ft2. 
 
A series of adjustments to the GateCycle operating logic were made under the following 
conditions: 
 
1) For the dry heat rejection system, there are approximately 230 hours each year in 

which the combination of thermal input from the collector field and the ambient 
temperature would normally result in turbine exhaust pressures above the maximum 
allowable value of 8 in. HgA.  For these hours, the thermal input to the steam 
generator is successively reduced in increments of 0.5 percent until the exhaust 
pressure decreases to 8 in. HgA.  The annual thermal energy which cannot be 
converted to electric energy during these hours is recorded. 

 
2) For the dry heat rejection system, condenser pressures below 1 in. HgA are possible 

on cold days, or on warm days with a small solar thermal input.  To reduce the 
auxiliary electric demand during these hours, cooling towers fans are stopped in 
groups of 6 until the condenser pressure rises to at least 1 in. HgA. 

 
3) For the wet heat rejection system, condenser pressures below 1 in. HgA are possible 

on cold days, or on warm days with a small solar thermal input.  To reduce the 
auxiliary electric demand during these hours, cooling towers fans are stopped in 
succession until the condenser pressure rises to at least 1 in. HgA. 

 
2.4  Hybrid Heat Rejection 
 
The required duty of the wet cooling tower in a hybrid system to achieve the desired 
condenser pressure of 2.5, 4, 6, or 8 in. HgA throughout the year is a function of the 
ambient temperature distribution and the parallel performance of the wet cooling tower 
and the air cooled condenser during the summer.  The required duties are determined by 
means of an annual simulation of the plant performance, discussed below in Section 3.3. 
 
3.   Annual Performance Calculations 
 
The performance of the Rankine cycle is a function of the thermal input to the steam 
generator, and the ambient temperature.  To estimate the annual performance of the plant, 
the following calculations were performed: 
 
1) A weather file was compiled for a Southwest desert site, listing for each hour of the 

year, the dry bulb temperature, relative humidity, and direct normal solar radiation. 
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2) For each hour of the year, the thermal output from the collector field was calculated 
by the Excelergy computer program, as discussed below. 

 
3) The dry bulb temperature, the relative humidity, and the thermal input from the 

collector field were exported to the GateCycle program.  The program calculated the 
steam turbine expansion efficiencies, exhaust losses, gross electric output, and the 
auxiliary electric loads for the cooling tower fans, the feedwater pump, the 
condensate pump, and if applicable, the circulating water pumps.  For the wet and the 
hybrid heat rejection systems, the makeup water flow to the cooling tower was also 
calculated.  The calculations were repeated for each of the 3,421 hours each year in 
which thermal energy was available from either the collector field or the thermal 
storage system. 

 
4) Annual sums were developed for the following parameters:  thermal energy supplied 

to the Rankine cycle; gross plant output; fan electric energy; pump electric energy; 
and net electric output.  From these values, annual gross and net Rankine cycle 
efficiencies were developed. 

 
The thermal output from the collector field is calculated using the Excelergy program.  
The program, under development by the National Renewable Energy Laboratory over the 
past 10 years, models the performance of parabolic trough collector fields and, if 
applicable, the associated Rankine cycle.  The model calculates the following: 
 
• Month of the year, day of the month, hour of the day, and time before noon 
 
• Each of the following angles:  solar declination; sun elevation; sun azimuth; and 

collector incidence.  From the collector incidence angle, an incidence angle modifier 
was calculated to account for the reflected flux which misses the end of the heat 
collection element during the midday hours 

 
• Each of the following optical efficiencies:  solar field availability; structure tracking 

error and twist; mirror reflectivity; geometric accuracy; mirror reflectivity, mirror 
cleanliness factor; and the following factors for the heat collection elements:  dust on 
glass envelope; bellows shading; envelope transmissivity; and absorber tube 
absorbtivity 

 
• Heat collection element thermal losses, including emissivity as a function of fluid 

temperature, and allowances for lost vacuum and lost glass envelopes 
 
• Gross field thermal output, by multiplying the following:  collector area; collector 

optical efficiency; and heat collection element thermal efficiency 
 
• Net field thermal output, by multiplying the gross output by 0.9805 to account for 

thermal losses from the field piping 
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• Auxiliary electric loads for the heat transport fluid circulation pumps and the collector 

drive motors. 
 
The program generates a file, of the field’s net thermal output for each hour of the year. 
 
3.1  Wet Heat Rejection 
 
From the 3,421 hourly performance calculations, a plot of the net electric output as a 
function of the ambient temperature for the wet heat rejection system is shown in Figure 
4.  The annual net electric output for the complete 250 MWe plant is estimated to be 
846,200 MWhe, and the net Rankine cycle efficiency is estimated to be 36.6 percent. 
 
As expected, the net output is essentially independent of the ambient temperature.  The 
effect can be traced to the low relative humidity, and consequently low wet bulb 
temperatures, on summer days in the desert. 
 
A majority of the data points are concentrated in the net electric output range of 270 to 
280 MWe.  This is a reflection of the excellent direct normal radiation at A Southwest 
desert site, plus the availability of energy from the thermal storage system, which 
maintains the Rankine cycle at, or close to, full load.  Data points are not shown for net 
outputs below 40 MWe, as the minimum turbine output is assumed to be 15 percent of 
the design output. 
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Figure 4  Net Plant Output as a Function of Ambient Temperature; Wet Heat Rejection 
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3.2  Dry Heat Rejection 
 
A plot of the net electric output as a function of the ambient temperature for the dry heat 
rejection system is shown in Figure 5.  The annual net electric output for the complete 
250 MWe plant is estimated to be 797,900 MWhe, and the net Rankine cycle efficiency 
is estimated to be 34.8 percent. 
 
For ambient temperatures between 40 °F and 100 °F, the condenser pressure increases as 
the dry bulb increases, and the net plant output shows a gradual decrease.  However, for 
ambient temperatures above 100 °F, the condenser cannot simultaneously condense the 
design point steam flow rate and provide a condenser pressure below 8 in. HgA.  As a 
result, the steam flow rate must be reduced to ensure the condenser pressure remains with 
limits.  During the one hour of the year with the highest temperature (113 °F), the plant 
output must be restricted to about 165 MWe. 
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Figure 5  Net Plant Output as a Function of Ambient Temperature; Dry Heat Rejection 

 
As with the wet cooling tower plot, data points in Figure 5 are not shown for net outputs 
below 40 MWe, the minimum turbine output which is 15 percent of the design output. 
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3.3  Hybrid Heat Rejection 
 
For the purposes of the study, the following wet cooling tower duties in each 125 MWe 
plant have been selected for the hybrid tower designs:   
 
 2.5 in HgA:  130 MWt;   4 in. HgA:  80 MWt;  

6 in. HgA:  45 MWt;  and  8 in. HgA:  15 MWt. 
 
3.4  Annual Performance Summary 
 
A plot of the net plant output (as a fraction of the wet tower plant output) as a function of 
the wet cooling tower water consumption (as a fraction of the water consumption of the 
wet cooling tower case) is shown in Figure 6.  As might be expected, the largest 
incremental gains occur with the first water used; i.e., switching from a dry system to the 
8 in. HgA hybrid system increases the net output by 8,300 kWhe per ton of water 
consumed.  As the water consumption is increased, the performance improvements 
become smaller; i.e., switching from the 2.5 in. HgA hybrid system to the wet cooling 
tower increases the net output by only 5 kWhe per ton of water consumed. 
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Figure 6  Net Plant Output as a Function of Wet Cooling Tower Water Consumption 
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The annual plant performance for the 6 cooling tower options is summarized in Table 1.  
Three trends can be noted, as follows: 
 
• The gross and the net plant outputs both increase as the water consumption increases 
 
• The pump energy demand is the highest for the wet cooling tower, and lowest for the 

air cooled condenser, due to the demands of the circulating water pumps 
 
• The hybrid cases use the same air cooled condenser as the dry cooling tower case; 

thus, the fan energies for the hybrid cases are the sum of the fan energies for the dry 
case plus a portion of the fan energies for the wet cooling tower. 

 
Table 1  Summary of Annual Plant Performance 

 

 

Gross Pump Fan Net
turbine, power, power, turbine, Gross Net Makeup
MWhe MWhe MWhe MWhe efficiency efficiency water, tons

Wet 875,199 19,157 8,956 846,161 0.379 0.366 2,705,132
Hybrid:  2.5 in. HgA 871,459 15,468 24,082 839,099 0.377 0.363 1,207,521
Hybrid:  4 in. HgA 858,196 13,702 19,601 827,234 0.372 0.358 360,998
Hybrid:  6 in. HgA 848,014 13,045 19,477 815,626 0.367 0.353 25,020
Hybrid:  8 in. HgA 845,290 13,002 19,390 812,903 0.366 0.352 1,803
Dry 827,262 12,977 16,413 797,872 0.361 0.348 0
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