

Panta Rhei – Everything Flows Change in Hydrology and Society IAHS Scientific Decade 2013-2022 www.iahs.info/pantarhei

Details of the Proposal

Title of the Working Group

Drought in the Anthropocene

Abstract of the proposed research activity

Drought severely impacts societies and ecosystems around the world. So far most drought research has focused on natural processes in pristine catchments. In the current era, termed the Anthropocene, the human aspect can no longer be neglected. One major challenge is the quantification of impacts of drought on society, i.e. finding the relation between physical drought characteristics and wildfires, crop yields, electricity production, navigation, etc. This is a basic prerequisite for the prediction of changes in risk and vulnerability in the future.

The opposite process, the influence of society on drought, is even more a white space on the map. In many regions, humans might be regarded as additional driver of drought for example through massive groundwater abstraction for irrigation or reduced recharge as a result of extensive urbanisation. Due to complex feedbacks between drought, hydrology and society, the effects of human influence and climate cannot simply be added; a major scientific challenge lies in finding their interaction and how this changes in the future.

The objective of this working group is studying the human aspects of hydrological drought at various scales, including impacts of drought on society and influence of society on drought. The working group focusses on process understanding and prediction. The outcome is an assessment of changes in drought-society-interactions at local, regional and global scale, which is an important step in our scientific understanding and a contribution to international environmental programmes.

Panta Rhei Research Themes, Targets and Science Questions addressed by the Working Group

Themes:

- Transdisciplinarity
- Mountain hydrology
- Water and energy fluxes in a changing environment
- Hydro-meteorological extremes: Decision making in an uncertain environment
- Global Change in Hydrology and Society
- Reservoirs impact

Targets:

- Understanding
- Estimation and prediction
- Science in practice

Science Questions:

- 1. What are the key gaps in our understanding of hydrologic change?
- 2. How do changes in hydrological systems interact with and feedback on natural and social systems driven by hydrological processes?
- 3. How can we use improved knowledge of coupled hydrological-social systems to improve model predictions, including estimation of predictive uncertainty and assessment of predictability?
- 4. How can we advance our monitoring and data analysis capabilities to predict and manage hydrologic change?
- 5. How can we support societies to adapt to changing conditions by considering the uncertainties and feedbacks between natural and human-induced hydrologic changes?

Societal impact of the Working Group activity

The outcomes of this working group are an important step towards more sustainable management of water resources. Therefore, they are of direct relevance for international programmes on global water security. Possible interested organisations on the global scale are international institutes, such as FAO, UNESCO, UNEP, WMO. On the local scale, policy makers and water managers are expected to be actively involved in this working group. Additionally, they can directly use the methods and data developed in this working group and apply the results in their own region. Possible stakeholders on the local scale include water boards, ministries of water (or environment or energy), drinking water companies, (groups of) farmers, the energy sector, the waterborne transport sector, etc. Current connections with stakeholders on the European scale and in a number of case study regions are available through the EU-project DROUGHT-R&SPI (www.eu-drought.org). The working group will also interact with stakeholders in Latin America, Asia and Africa through the UNESCO-IHP programme G-WADI (www.gwadi.org).

List of Participants

Name of	Affiliation (full	Role in Working	Main expertise
Participant	address and email)	Group (Chair or	
		Member)	
1 Anne Van Loon	(Wageningen	Chair	hydrological drought, water
	University, the		scarcity, drought
	Netherlands)		propagation, catchment
			scale data-analysis &
			modelling
2 Giuliano Di	Uppsala University,	Co-chair	human impact on water
Baldassarre	Sweden		resources, hydrological
			extremes, risk management
			under uncertainty
3 Henny Van Lanen	Wageningen	Member	drought, catchment
	University, the		hydrology, modeling,
	Netherlands		monitoring, groundwater,
			hydrogeology
4 Tom Gleeson	McGill University,	Member	Global groundwater
	Canada		processes, sustainability and
			connections to surface
			waters, including drought
5 Niko Wanders	Utrecht University,	Member	drought, hydrological
	the Netherlands		modelling, data assimilation,
			microwave remote sensing
6 Yoshihide Wada	Utrecht University,	Member	Hydrology and Climate,
	the Netherlands		Global Hydrological
			Modeling, Water Scarcity,
			Human Impacts on Global
			Water Resources,
			Groundwater Resources
			Sustainability, Hydrological
			Drought, Irrigation
7 Alexandra	Cologne University	Member	drought management, river
Nauditt	of Applied Sciences		basin assessment and
			management, hydrological
			modelling, interactions
			between land use, water
			resources and climate
8 Koen Verbist	UNESCO Santiago,	Member	Climate Risk Management,
	Chile		Decision Support Systems
			for Drought Management at
			the national/regional scale.
9 Boud Verbeiren	Vrije Universiteit	Member	groundwater drought,
	Brussel, Belgium		remote Sensing supported
			hydrological modeling
10 Okke Batelaan	Flinders University,	Member	recharge estimation,
	Australia		regional scale surface-
			groundwater modelling
11 Floris Van	The University of	Member	hydrological data driven
Ogtrop	Sydney, Australia		modelling, climate modelling

12 Willem	The University of	Member	hydrological simulation,
Vervoort	Sydney, Australia		interactions between
			landscape, climate and
12 The veter	Liniversity of	Manahar	Vegetation
13 Thorsten Wageper	University of Bristol LIK	Member	Hydrology, Water resource
wagenei	Bristor, OK		change Uncertainty and
			risk. Ecosystem services
14 Jurgen Vogt	JRC. Italy	Member	European Drought
			Observatory
15 Elena Toth	University of	Member	Rainfall-runoff modelling,
	Bologna, Italy		Real-time flood forecasting,
			rainfall remote sensing,
			Time-series analysis,
			Classification of watersheds
16 Shreedar	UNESCO-IHE Delft,	Member	hydrological modelling,
Maskey	the Netherlands		hydrological and agricultural
			droughts, climate change
			assossment
17 Albert Kettner	University of	Member	hydrological extremes
17 Abert Retther	Colorado, USA	Wielinder	Dartmouth Flood
			Observatory
18 Kimberly Rogers	Institute of Arctic	Member	fresh water management
	and Alpine		and irrigation practices,
	Research,		coastal and deltaic
	University of		sedimentation
	Colorado, USA		
19 Lena Tallaksen	University of Oslo,	Member	Hydrological drought
	Norway		characterisation and
			drought impacts climate
			change
20 Justin Sheffield	Princeton	Member	global land surface
20 Justin Shemelu	University, USA	Wielinder	hydrological cycle, historic
			and future drought, soil
			moisture memory,
			precipitation recycling,
			teleconnectivity
21 Marjolein Van	University of	Member	Drought, catchment
Huijgevoort	Aberdeen, UK		hydrology, hydrological
			modelling
22 Jamie	CEH, UK	Member	Hydrological drought,
Hannaford			arought indicators, drought
			warning long torm tronds
			and variability climate
			drivers
23 Simon Parry	CEH. UK	Member	Drought, drought
,	,		termination, floods.
			hydrological extremes,

			hydrometric data,
			hydrological modelling
24 Christel	CEH, UK	Member	drought propagation,
Prudhomme			recovery, catchment
			properties, seasonal
			forecasting of low flows,
			climate change